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Abstract In this paper we aim to study a family of equilibrium problems governed by
pseudomonotone maps depending on a parameter and the behavior of their solutions. The
main result gives sufficient conditions for closedness of the solution map defined on the set
of parameters.
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1 Introduction

Over the last decades, there has been an increasing interest in studying parametric equilibrium
problems and their particular cases, such as variational inequalities, optimization problems,
mini–max point problems, and Nash equilibrium problems. As a result of changes in the
problem data, the behavior of the solutions of such problems is always of concern. Our aim is
to investigate three regularity properties of these solutions. To be more precise, we formulate
the parametric equilibrium problem.

In this paper (X, σ ) is a Hausdorff topological space and P (the set of parameters) is
another Hausdorff topological space. For a given p ∈ P we consider the following equilib-
rium problem:

(E P)p Find an element ap ∈ Dp such that

f p(ap, b) ≥ 0, ∀b ∈ Dp, (1)
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where Dp is a nonempty subset of X and f p(·, ·) : X × X → R is a given
function.

Denote by S(p) the set of the solutions for a fixed p. Suppose that S(p) �= ∅, for all
p ∈ P. (For sufficient conditions for the existence of solutions see, e.g. [10,16,24,26]).

There are several concepts of regularity for parametric equilibrium problems. We intend
to study the following three of them:

(i) For p0 ∈ P fixed and for each net of elements (pi , api ) ∈ Graph S, (i ∈ I ) pi → p0

and api

σ→ ap0 imply (p0, ap0) ∈ Graph S, (closedness of S at p0);
(ii) For p0 ∈ P fixed with S(p0) = {ap0} and for each net of elements (pi , api ) ∈

Graph S, (i ∈ I ) such that pi → p0, one has api

σ→ ap0 (Hadamard well-posedness
of (E P)p at p0);

(iii) For p0 ∈ P fixed with S(p0) �= ∅ and for each net of elements (pi , api ) ∈ Graph S,

(i ∈ I ) such that pi → p0, (api ) must have a subnet σ−converging to an element of
S(p0) (generalized Hadamard well-posed of (E P)p at p0).

There are numerous results concerning these properties. In the context of variational
inequalities governed by monotone hemicontinuous operators, Mosco obtained closedness
of the solution map for parametric variational inequalities (see [38], Theorem A and Theorem
B). Gwinner [19] and Lignola and Morgan [30–32] established closedness of the solution
map for parametric variational inequalities under more general monotoniticity assumptions.
Li et al. [29] and more recently Khanh and Luu [21] established closedness of the solution
map for parametric quasi-variational inequalities. The closedness of the solution map for
parametric variational inequalities governed by operators of Vis̆ik type was proved in [13].

Many researchers investigated well-posedness for some specific problems (see [16,35]
and references therein). Relationships between different concepts of well-posedness for op-
timization and Nash equilibria, such as Tykhonov well-posedness, Hadamard well-posedness,
and Levitin—Polyak well-posedness have been given in [11,36,37,39,42,43].

Upper semi-continuity in the first variable of the function f p(·, ·) is supposed in most of the
papers mentioned above. This condition is motivated by restrictions occurring in economy.
Even if it looks natural, in some important particular cases it is not satisfied. This happens,
for instance, in the case of variational inequalities governed by differential operators (see
Sect. 4 below). To compensate for the lack of upper semi-continuity, Brézis [14] introduced
the notion of topological pseudomonotonicity (which is a kind of conditioned upper semi-
continuity) in the context of variational inequalities.

The study of regularization methods for perturbed variational inequalities with single-
valued pseudomonotone operators was initiated in [33]. Penalty methods for variational
inequalities were given in [18] and [1]. Regularization and penalization for variational
inequalities with set-valued pseudomonotone operators are unified and sufficient conditions
for generalized Hadamard well-posedness are given in [34]. Some results on regularized equi-
librium problems related to generalized Hadamard well-posedness were obtained in [20] and
[15].

The present paper offers sufficient conditions for the mentioned regularities. To achieve
this we used, among other instruments, a generalization of the topological pseudomonotonic-
ity given in [8]. This notion allowed us to derive, from the obtained results, some of the known
statements in the specialized literature (see Sects. 4, 5).

The main results related to closedness are contained in Theorem 1 and Theorem 2 (see
Sect. 3). From them Hadamard well-posedness and generalized Hadamard well-posedness
in Corollary 1 and Corollary 3 can easily be deduced. Our results generalize most of the
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statements mentioned above about properties (i), (ii), and (iii), for real valued parametric
bifunctions.

The paper is organized as follows. In Sect. 2 we give the definition of the topological
pseudomonotonicity of bifunction and of Mosco convergence of parametric domains from a
space with two topologies. We also present some known results we need in the subsequent
sections. Section 3 contains our results about closedness of the solution map (Theorem 1)
and generalized Hadamard well-posedness of problem (E P)p (Corollary 1). Some examples
are given in order to illustrate the relevance of the condition (C) about the dependence of
f p on the parameter p, imposed in Theorem 1. In Sect. 4 parametric variational inequalities
governed by nonlinear differential operators of Vis̆ik type are treated and the closedness of
the solution map is deduced. In Sect. 5 we discuss the case of constant domains, i.e. Dp

does not depent on p. In this case, the condition (C) can be weakened. As applications,
some known results on Walras equilibrium points, Ky Fan equilibrium points, and Hadamard
well-posedness of problem (E P)p in two particular cases considered in [11] are deduced.

Besides (i), (ii), (iii) there are several other regularity properties, such as: upper semi-
continuity of the solution map [2,4,5,22,23], continuity of the solution map [17], Hölder
estimations of the solutions [3,7,8,12], derivability with respect to the parameter of the
solution map, etc., however these do not make the subject of the present paper.

2 Definitions and auxiliary results

We will use the following generalization of topological pseudomonotonicity introduced
by Brézis in [14].

Definition 1 [8, p. 410] A function g : X × X → R is said to be topologically
pseudomonotone if for each net (ai )i∈I ⊂ X with ai

σ→ a in X, lim inf
i

g(ai , a) ≥ 0 imply

lim sup
i

g(ai , b) ≤ g(a, b), for all b ∈ X.

For the parametric domains in (E P)p we shall use the following type of convergence,
which is a slight generalization of Mosco’s convergence in [38]. In the following, besides the
topology σ, we also consider a stronger topology τ on X. Hence, when X is a normed space,
σ can be chosen as the weak topology and τ as the strong topology on X (see Sect. 4).

Definition 2 Let Dp be subsets of X for all p ∈ P. The sets Dp converge to Dp0 (and write

Dp
M−→ Dp0 ) as p → p0 if:

(a) for every net (api )i∈I with api ∈ Dpi , pi → p0 and api

σ→ a imply a ∈ Dp0 ;
(b) for every a ∈ Dp0 , there exist ap ∈ Dp such that ap

τ→ a as p → p0.

If X is a normed space and σ = τ = norm topology, Dp
M−→ Dp0 amounts to saying that

the sets Dp converge to Dp0 in the Painlevé-Kuratowski sense as p → p0. A comparison
of the Mosco convergence with the Hausdorff convergence, for example, is given in Lemma
1.1 in [38].

Let us recall some other classical definitions from set-valued analysis. Let X, Y be Haus-
dorff topological spaces. The set-valued map T : Y → 2X is said to be upper semi-continuous
at y0 ∈ dom T := {y ∈ Y | T (y) �= ∅} if, for each neighborhood V of T (y0), there exists a
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neighborhood U of y0 such that T (U ) ⊂ V . The map T is said to be closed at y ∈ dom T
if, for each net (yi )i∈I in dom T, yi → y and each net (xi )i∈I , xi ∈ T (yi ) with xi → x,

one has x ∈ T (y). The map T is said to be closed if it is closed at all y ∈ dom T or equiva-
lently if its graph Graph T = {(y, x) ∈ Y × X | x ∈ T (y)} is closed. Closedness and upper
semi-continuity of a set-valued map are closely related as shown in the following result.

Proposition 1 ([9], Proposition 1.4.8, 1.4.9) Let X, Y be Hausdorff topological spaces.

(a) If T : Y → 2X has closed values and is upper semi-continuous, then T is closed;
(b) If X is compact and T is closed at y ∈ Y, then T is upper semi-continuous at y ∈ Y.

The relationship between upper semi-continuity and Hadamard well-posedness is given
in the following statement.

Proposition 2 ([42], Theorem 2.2) If the solution map S : P → 2X is upper semi-continuous
at p0 ∈ P and S(p0) is compact, then (E P)p is generalized Hadamard well-posed at p0.

Furthermore, if S(p0) = {ap0} (a singleton), then (E P)p is Hadamard well-posed at p0.

3 Closedness of the solution mapping

Let us return to the problem (E P)p stated in Introduction.
In order to state our main result, among others we impose the following condition at

p0 ∈ P :
(C) For each net of elements (pi , api ) ∈ Graph S, if pi → p0, api

σ→ a, bpi ∈ Dpi , b ∈
Dp0 , and bpi

τ→ b, then

lim inf
i

(
f pi (api , bpi ) − f p0(api , b)

) ≤ 0.

Remark 1 Condition (C) is weaker than the following one:
(C)eq For each net (pi , api ) ∈ Graph S, if pi → p0, api

σ→ a, bpi ∈ Dpi , b ∈ Dp0 ,

and bpi

τ→ b, then
lim

i

(
f pi (api , bpi ) − f p0(api , b)

) = 0.

Obviously, (C)eq applies if X is a normed space, σ and τ being the weak and strong
topology on X, respectively, and

| f p(ap, bp) − f p0(ap, b)| ≤ α(p)
(‖ap‖ + ‖bp‖

)
, for each ap, bp ∈ Dp, b ∈ Dp0 ,

with α a nonnegative function continuous at p0 and α(p0) = 0.

The main result of this section is the following.

Theorem 1 Let X be a Hausdorff topological space with σ and τ the topologies as in Sect.
2. Let Dp be nonempty sets of X, p ∈ P, and let p0 ∈ P be fixed. Suppose that S(p) �= ∅,

for each p ∈ P, and the following conditions hold:

(i) Dp
M−→ Dp0 ;

(ii) f p(·, ·) satisfies condition (C) at p0;
(iii) f p0(·, ·) : X × X → R is topologically pseudomonotone.
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Then the solution map p 
−→ S(p) is closed at p0, i.e. for each net of elements (pi , api ) ∈
Graph S, pi → p0 and api → a imply (p0, a) ∈ Graph S.

Proof Let (pi , api )i∈I be a net of elements (pi , api ) ∈ Graph S with pi → p0 and api

σ→ a.

From i) we get a ∈ Dp0 . Moreover, there exists a net (āpi )i∈I , āpi ∈ Dpi such that āpi

τ→ a
in X. Replacing b with āpi in (1), it follows:

f pi (api , āpi ) ≥ 0.

By condition (C), for bpi := āpi , we have

lim sup
i

f p0(api , a) ≥ 0,

hence, there exists a subnet of (pi , api )i∈I , denoted by the same indexes, such that

lim
i

f p0(api , a) = lim sup
i

f p0(api , a).

Now, we apply i i i) for the subnet gained above to yield

lim sup
i

f p0(api , b) ≤ f p0(a, b), for all b ∈ Dp0 . (2)

Finally, due to (2), for b ∈ Dp0 , bpi ∈ Dpi , bpi

τ→ b, and condition (C), we obtain

0 ≤ lim inf
i

f pi (api , bpi ) ≤ lim sup
i

f p0(api , b) + lim inf
i

(
f pi (api , bpi ) − f p0(api , b)

)

≤ lim sup
i

f p0(api , b) ≤ f p0(a, b),

which completes the proof. ��
The closedness of S plays an important role, for instance, in shape optimization theory.

In that case (C)eq is satisfied by some reasonable conditions (see [25], Remark 2).
We use the following property of the solution map S.

Lemma 1 If Dp0 is closed and f p0(·, ·) : X × X → R is topologically pseudomonotone,
then S(p0) is closed.

Proof Let ai ∈ S(p0) with ai
σ→ a. Thus a ∈ Dp0 , hence

0 ≤ lim inf
i

f p0(ai , a).

Using topologically pseudomotonicity we obtain

0 ≤ lim inf
i

f p0(ai , b) ≤ lim sup
i

f p0(ai , b) ≤ f p0(a, b), ∀ b ∈ Dp0 ,

consequently a ∈ S(p0). ��
As an application we state a result about well-posedness.

Corollary 1 Let (X, σ ) be a compact Hausdorff topological space and P be a Hausdorff
topological space. Let Dp0 be a closed subset of X. If the hypotheses of Theorem 1 are
satisfied, then (E P)p is generalized Hadamard well-posed at p0. Furthermore, if S(p0) =
{ap0} (a singleton), then (E P)p is Hadamard well-posed at p0.
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Proof By Theorem 1 it follows that the solution map S is closed at p0.We may use Proposition
1 (ii) to state that S is upper semi-continuous at p0. The set S(p0) is closed by Lemma 1,
therefore compact. The conclusion follows by Proposition 2. ��

For all the examples in the sequel we shall consider P = N ∪ {∞}, p0 = ∞, (∞ means
+∞ from real analysis), Dp = [0, 1], p ∈ P, the real functions f p(·, ·) : [0, 1]×[0, 1] → R,

and σ, τ are the natural topology on X = [0, 1]. On P we consider the topology induced by
the metric given by d(m, n) = |1/m − 1/n|, d(n,∞) = d(∞, n) = 1/n, for m, n ∈ N, and
d(∞,∞) = 0.

As the following example shows condition (C) is essential for Theorem 1.

Example 1 Let fn(a, b) = na · exp (1 − na) − b, n ∈ N and f∞(a, b) = a − b.

We have (n, 1/n) ∈ Graph S, for each n ∈ N, S(∞) �= ∅ but 0 �∈ S(∞). Hence S is not
closed at ∞. In this case f∞ is topologically pseudomonotone, but for bn → b one has

lim inf
n→∞

(
fn(1/n, bn) − f∞(1/n, b)

) = 1 > 0,

so (C) fails at ∞.

The next example shows that topologically pseudomonotonicity of the limit function f∞
is essential for Theorem 1.

Example 2 Let fn(a, b) = b − |a − 1/n|, n ∈ N and

f∞(a, b) =
{

sin(1/a), a �= 0, b ∈ [0, 1]
−1, a = 0, b ∈ [0, 1] .

We have (n, 1/n) ∈ Graph S for each n ∈ N, S(∞) �= ∅, but 0 �∈ S(∞). Hence S is not
closed at ∞.

Let us check condition (C) at ∞. For an = 1/n ∈ S(n), n ∈ N, bn ∈ [0, 1], and
bn → b ∈ [0, 1], one has

lim inf
n→∞

(
fn(an, bn) − f∞(an, b)

) = b − lim sup
n→∞

f∞(1/n, b) ≤ 0.

In this case f∞ is not topologically pseudomonotone since for an = 1/(2nπ + π/2) → 0
one has lim infn→∞ f∞(an, 0) = 1 ≥ 0, but

lim sup
n→∞

f∞(an, 0) = 1 > −1 = f∞(0, 0).

One might have fn −→ f∞ uniformly, but condition (C) does not apply at ∞ as the next
example yields.

Example 3 For each n ∈ P let us consider the functions fn given by

fn(a, b) =
{

a − b + 1/n, b �= 0, a ∈ [0, 1]
0, b = 0, a ∈ [0, 1] , n ∈ N,

and

f∞(a, b) =
{

a − b, b �= 0, a ∈ [0, 1]
0, b = 0, a ∈ [0, 1] .

We have obviously fn −→ f∞ (uniformly). To brake (C) we choose an = 1 and bn = 1/n.

In this case

lim inf
n→∞

(
fn(an, bn) − f∞(an, 0)

) = 1.
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4 Parametric variational inequalities

Let X be a normed space, σ the weak topology and τ the strong topology on X.

Lemma 2 Let X∗ be the dual space of X. Let Ap : X → X∗ be operators having the uniform
boundedness property, namely for ap ∈ X, (ap)p bounded, there exists a constant c > 0
such that ‖Ap(ap)‖ ≤ c for any p ∈ P.

Define f p : X × X → R by f p(a, b) = 〈Ap(a), b − a〉.
Suppose that Ap satisfy hypothesis

(H) For each net of elements (pi , api ) ∈ Graph S such that

pi → p0 and api

σ→ a, and for all b ∈ Dp0 , yields

lim inf
i

〈Api (api ) − Ap0(api ), b − api 〉 ≤ 0. (3)

Then condition (C) applies at p0.

Proof Let b ∈ Dp0 , bpi ∈ Dpi , and bpi

τ→ b, as pi → p0. Since

〈Api (api ), bpi − api 〉 − 〈Ap0(api ), b − api 〉 = 〈Api (api ) − Ap0(api ), b − api 〉
+ 〈Api (api ), bpi − b〉,

the assertion follows from (3). ��
The hypothesis (H) applies in some important particular case. To see this, let � be a

bounded open set of R
N with Lipschitz boundary. Let X = H1(�)be the usual Sobolev space.

Let us consider P = N∪{∞}, p0 = ∞. Suppose that the functions v
p
i : R

N ×R×R
N → R

(i = 0, . . . , N ) have the following properties (see [40, p. 74]):

(P1) For i = 0, . . . , N , v
p
i (x, η, ξ) is measurable in x ∈ R

N and continuous in (η, ξ) ∈
R × R

N ;
(P2) For i = 0, . . . , N , |v p

i (x, η, ξ)| ≤ c(k(x) + |η| + ‖ξ‖N ) for a.e. x ∈ R
N ,∀ η ∈ R,

∀ ξ ∈ R
N , with c a positive constant and k a function in L4

loc(R
N );

(P3)
N∑

i=1

(
v

p
i (x, η, ξ) − v

p
i (x, η, ξ̃ )

)
(ξi − ξ̃i ) > 0 for a.e. x ∈ R

N , ∀ η ∈ R, ∀ ξ, ξ̃ ∈ R
N ,

and ξ �= ξ̃ ;
(P4)

N∑

i=1

v
p
i (x, η, ξ)ξi ≥ c1‖ξ‖2

N − c2 and v
p
0 (x, η, ξ)η ≥ c3|η|2 − c4,

for a.e. x ∈ R
N , ∀ η ∈ R, ∀ ξ ∈ R

N , with c1, c2, c3, c4 positive constants.

For every p ∈ P we consider the function f p : H1(�) × H1(�) → R given by

f p(a, b) =
∫

�

{
N∑

i=1

v
p
i (x, a(x),∇a(x)) · ∂i (b − a)(x)

}

dx

+
∫

�

v
p
0 (x, a(x),∇a(x))(b − a)(x)dx .

Here ∂i denotes the partial derivative with respect to the variable xi .
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By the well known result due to Leray-Lions ([40], Theorem 6.1; [28]) the functions f p are
topologically pseudomonotone, for all p ∈ P, but f p(·, b) can be not upper semi-continuous.

We have shown in [13] that (H) applies if one has

(h) |v p
i (x, η, ξ) − v∞

i (x, η, ξ)| ≤ α(1/p)(‖ξ‖N + |η| + k̃(x)),

for all p ∈ N, i = 0, . . . , N , ξ ∈ R
N , η ∈ R, and a.e. x ∈ �. Here, k̃ has nonnegative

values and belongs to L2(�), α is a nonnegative function, continuous at 0 and α(0) = 0.

Corollary 2 ([13], Theorem 1) If the functions v
p
i (i = 0, . . . , N ) have properties (P1),

(P2), (P3), (P4), Dp
M−→ D∞, and (h) applies, then the solution map S is closed at ∞.

5 The case of constant domains

Let us study the particular case when Dp = X for all p ∈ P. In this case condition (C) can
be weakened to:

(C)′ For each net of elements (pi , api ) ∈ Graph S, if pi → p0, api

σ→ a, and b ∈ X,

one has

lim inf
i

(
f pi (api , b) − f p0(api , b)

) ≤ 0.

In this particular case the proof of the assertion in Theorem 1 goes easier:

0 ≤ lim inf
i

f pi (api , b) ≤ lim sup
i

f p0(api , b) + lim inf
i

(
f pi (api , b) − f p0(api , b)

)

≤ lim sup
i

f p0(api , b) ≤ f p0(a, b), ∀ b ∈ X.

Therefore we have the following statement:

Theorem 2 Consider problem (E P)p with Dp = X. Suppose that:

(i′) f p(·, ·) satisfies condition (C′) at p0;
(ii′′) f p0(·, ·) : X × X → R is topologically pseudomonotone.

Then the solution map p 
−→ S(p) is closed at p0.

As Example 3 shows, in case of constant domains it can happen that (C′) applies but (C)

does not.
Similarly to Corollary 1 we deduce the following:

Corollary 3 Consider (E P)p with Dp = X and let X be compact. If the hypotheses of
Theorem 2 are satisfied then (E P)p is generalized Hadamard well-posed at p0. Furthermore,
if S(p0) = {ap0} (a singleton), then (E P)p is Hadamard well-posed at p0.

5.1 Applications

In the following we deduce from Corollary 3 four known results.
(A1) The first one is due to Jofré and Wets on Walras equilibrium points.
The general framework is taken over from [27]. Let us denote

X =
⎧
⎨

⎩
a ∈ R

N+|
N∑

j=1

a j = 1

⎫
⎬

⎭

the price simplex.
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An equilibrium price ā ∈ X, for a pure exchange economy E, is a solution of the inclusion

0 ∈ S(a).

Here the set-valued function S : X → 2R
N

is defined by S(a) = s(a) − R
N+ , where the

function s : R
N+ → R

N is the so-called excess supply function. This function s is assumed
to be nonnegative and continuous on the price simplex X (see [27], Proposition 4).

The Walrasian W : X × X → R associated with the supply function s is defined by

W (a, b) = 〈s(a), b〉.
The bifunction W has the following properties:

(α) ∀b ∈ X : W (·, b) is continuous;
(β) ∀a ∈ X : W (a, ·) is affine;
(γ ) ∀a ∈ X : W (a, a) ≥ 0.

Of course, the equilibrium prices are exactly the equilibrium points of W.

Corollary 4 ([27], Theorem 15) Consider the sequence of Walrasians (Wn)n∈N and W

associated with supply functions sn and s, respectively. Suppose that sn
c→ s, i.e. for any

(an)n∈N, an ∈ X with an → a one has sn(an) → s(a). Then, for each Wn (n ∈ N) and
W there exists at least one equilibrium point in X, denoted by ān and ā, respectively. The
set of cluster points of the sequence (ān)n∈N is never empty, and every cluster point is an
equilibrium point for the economy E with the supply function s.

Proof Let σ = τ be the natural topology on X. The existence of the equilibrium points is
obvious. Let us check condition (C′) at ∞. For b ∈ X and an ∈ S(n), with an → a, using

sn
c→ s, we have

lim inf
n

[Wn(an, b) − W (an, b)] = lim inf
n

[〈sn(an), b〉 − 〈s(an), b〉] = 0.

The function W (·, b) being continuous, W is topologically pseudomonotone.
Consequently from our Corollary 3 follows the assertion. ��
(A2) The second application is related to a recent result contained in [43].
Let X be a compact metric space. Let M be the set of all functions f : X×X → R such that

a 
→ f (a, b) is upper semi-continuous for each b ∈ X and sup(a,b)∈X×X | f (a, b)| < +∞.

For each f, g ∈ M define the distance of uniformly convergence:

ρ( f, g) = sup
(a,b)∈X×X

| f (a, b) − g(a, b)|.

Then (M, ρ) is a complete metric space. Consider the set of parameters

P = { f ∈ M : there exists a∗ ∈ X such that f (a∗, b) ≥ 0, for all b ∈ X}.
Given f ∈ P, such an a∗ is called an equilibrium point of f. (In [41] such an a∗ is called

a Ky Fan point of − f.) Denote by S( f ) the set of equilibrium points of f. Then f 
−→ S( f )

defines a set-valued map from P to X. Let fn, g ∈ P, (n ∈ N). We shall write fn
ρ−→ g if

fn converges to g with respect to ρ.

Corollary 5 ([43], Theorem 3.1) The equilibrium problem is generalized Hadamard well-

posed at every f ∈ P, i.e. for any sequence ( fn) ⊂ P with fn
ρ−→ f and any an ∈

S( fn), (an) must have a subsequence converging to an element in S( f ).

Suppose furthermore that S( f ) = {a0}. Then the equilibrium problem is Hadamard well-

posed at f, i.e. for any ( fn) with fn
ρ−→ f and any an ∈ S( fn), there must be an → a0.
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Proof Let f, fn ∈ P such that fn
ρ−→ f. Condition (C′) applies at ∞ obviously. Since f ∈

M, f is upper semi-continuous in its first variable, hence it is topologically pseudomonotone.
The conclusion follows by Corollary 3. ��

(A3) Let P = [0,+∞), (X, d) be a metric space, and f0 : X × X → R be a function with
f0(a, a) ≥ 0, for every a ∈ X. Let us consider the following expressions for the function
f p :
(1) f p(a, b) = f0(a, b) + p;
(2) f p(a, b) = f0(a, b) + pd(a, b).

Let σ and τ be the same topology induced by d. Obviously, in both cases 1) and 2), one

has f p
ρ−→ f0 uniformly on bounded subsets, hence (C′) apply at p0 = 0.

If f0 is upper semi-continuous in its first variable, then so is f p. In this case, if X is
compact, we obviously have S(p) �= ∅ for all p ∈ P.

Therefore, we have:

Corollary 6 ([11], Corollary 3) Let (X, d) be a compact metric space, and let f0 : X × X →
R be such that f0(a, a) ≥ 0, for every a ∈ X. Suppose that f0(·, b) is upper semi-continuous
for every b ∈ X. Then for f p defined by 1) or 2), problem (E P)p is Hadamard well-posed
at 0.

Let P = N ∪ {∞}. Observe that condition (C′) apply at p0 = ∞ while fn
ρ−→ f∞

(uniformly), but the reverse implication does not hold, as the following example shows.

Example 4 Let fn, f∞ : [0, 1] → R, n ∈ N. Let fn(a, b) = (
na ·exp (−na)−1/e

)
(b−a),

and f∞(a, b) = 0, for each a, b ∈ [0, 1]. Obviously, fn does not converge even punctually
to f∞ on X = [0, 1]. To verify (C′) let an ∈ S(n), thus an = 1/n. For b ∈ [0, 1] we have
lim infn→∞

(
fn(an, b) − f∞(an, b)

) = 0, so (C′) applies.

(A4) Example 4 also provides a case when Theorem 2 applies but Theorem 2.1 in
[21] does not.

For this let X = [0, 1] with the natural topology, P = N ∪ {∞}, and C(a) = R+,

gn(a) = a, for each n ∈ P. Let tn : X → R, n ∈ P, and suppose that t∞ is continuous.
In this case the parametric vector quasi-variational inequality problem (P QV I )n studied in
[21] collapses into the following parametric equilibrium problem:

Find an element an ∈ D such that

fn(an, b) ≥ 0, ∀b ∈ X,

with fn(a, b) = tn(a) · (b − a).

From Theorem 2.1 in [21] it follows that, if

∀an → a,∀yn → y0, ∃ tnk (ank ), (a subsequence of tn(an)),

such that tnk (ank ) · ynk → t∞(a) · y0, (4)

then the solution map S is closed at p0 = ∞.

We claim that the requirement (4) implies the hypotheses of our Theorem 1, but the reverse
implication is not true.

Indeed, (C) applies at ∞ since, if an ∈ X, an → a, bn → b, then

lim inf
n→∞ [tn(an) · (bn − an) − t∞(an) · (b − an)]

≤ lim
k→∞[tnk (ank ) · (bnk − ank ) − t∞(ank ) · (b − ank )] = 0.
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Of course, f∞ is topologically pseudomonotone. Therefore, if (4) holds then Theorem 2
applies.

On the other hand, if we consider the functions defined by tn(a) = na · exp (−na) − 1/e
and t∞(a) = 0, and choose an = a, bn = b > a in X, then

lim
n→∞ tn(an) · (bn − an) = −1/e · (b − a) < 0 = t∞(a) · (b − a),

hence condition (4) fails.

Acknowledgements The authors are indebted to the referee for careful reading, for valuable and constructive
remarks.
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